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Using computer simulations, it is shown that experiments aimed at demonstrating “presentiment”
by showing arousal to be higher prior to arousing stimuli than prior to calm stimuli presented in a
randomised (with replacement) order run the risk of being afflicted with a computational bias. The
bias is based on the (false) expectation that the likelihood of an arousing stimulus being presented
grows as the number of consecutive calm stimuli increases (the gambler’s fallacy). When group
means are calculated across individual means, they become larger prior to activating stimuli than
prior to calm stimuli, with an effect size of about 10% for “realistic” experiments and various
reasonable models of expectation growth. The effect remains when subjects are pooled before
averaging, but tends to become much smaller (typically around 0.01 %), although the maximum
effect (regardless of model) may be larger. The bias decreases as the length of the sequence
increases and approaches zero as the length of the sequence approaches infinity.

The bias is shown to be attributable to inappropriate calculations of means: for sequences of
consecutive calm stimuli, the first stimulus in each sequence is entered into the denominator, even
though it is not preceded by an expectation of an arousing stimulus. This will lead to a reduction in
the mean arousal prior to calm stimuli as compared to the mean arousal prior to activating stimuli.
But as the sequence length increases, the effect will diminish, due to the reduced importance of the
first calm stimulus in a series of such stimuli.

Various possible strategies for attempting to get rid of the bias are discussed, but none of
them is judged to be fully satisfactory. One such strategy is, for example, to refrain from
calculating means and just sum up the arousal values for activating and calm stimuli, respectively;
however, since the relative number of activating and calm stimuli vary from one participant to
another, due to sampling fluctuations, a possible true presentiment effect runs the risk of being
obscured by the random effects of unequal numbers of activating and calm stimuli.

It is argued that the bias may occur in various other types of experiment, both within and
outside parapsychology. Experiments that are potentially vulnerable to this bias are claimed to be
characterized by five properties: (1) There is a fixed number of types of target (not necessarily
two) (2) Feed-back is given after each trial. (3) The different target types are associated with
expectation functions that differ from each other in a relevant way (which needs to be worked out
for each particular type of experiment) (4) The dependent variable is a set of responses that are
systematically related to the different expectation functions. It is argued that numerous previous
experiments need to be checked for the occurrence of the bias.

Some years ago, Dean Radin published results from a series of precognition experiments
(Radin, 1997) that have already attracted much attention. The experiments have, for example,
been described in a widely spread international textbook in psychology (Hayes, 2000). There
are probably two reasons for this great interest. One is that the results, as measured by
parapsychological standards, seem to be unusually replicable (replication studies with fairly
good results are presented in Radin, 1999; Bierman & Radin, 1997; Bierman & Radin, 1998
and in Bierman, 2000). The second reason is that the experiments are based on a design that
does not require any particular ”parapsychological” apparatus, but in essence belongs to the
standard repertoire of mainstream psychology.
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The Presentiment Experiments
Protocol and results

The experiments aim to test the idea that people may have a ”presentiment” of what is going
to happen. This presentiment, it is thought, is not necessarily strong enough to reach the
conscious level; it is rather thought that a presentiment tends to remain at an unconscious
level and that it, consequently, is most properly measured indirectly, preferably using some
physiological measure, rather than by means of subjective reports. The physiological measure
that has most often been used in presentiment experiments is some measure of electrical skin
resistance, or electrodermal activity (EDA), which is generally assumed to be a valid measure
of emotional arousal.

A typical experiment is conducted as follows. The participant is connected to electrodes,
for measurement of EDA, and is seated in front of a computer screen, on which pictures
varying in emotional content are to be shown. When the participant is ready to start, he or she
pushes a mouse button, telling the computer to start a trial. Each of a predetermined number
of trials (typically around 40) is started by the participant pushing the mouse button; this is
done when he or she "feels like it”. Each trial is divided into three periods:

(1) Before the picture is shown (e.g., 5 sec)
(2) The picture is shown (e.g., 3 sec)
(3) After the picture has been shown (e.g., 5 sec)

The pictures are of two types: (a) arousing pictures, that is, emotionally activating
pictures (for example, pictures depicting violence or sexual motifs) and (b) calm pictures. The
pictures shown are selected randomly, with replacement, from a pool. The number of
activating and calm pictures need not be the same. In order to avoid, or minimize, habituation,
there is most often a larger number of calm pictures than of activating pictures (for example,
twice as many calm as activating pictures). The participants” task merely consists of viewing
the pictures as they appear on the screen.

In mainstream research, when data are averaged across participants and pictures, this
type of protocol normally results in much stronger EDA reactions in response to activating
pictures than in response to calm pictures. What Radin found, however, was that stronger
EDA reactions were triggered by activating pictures than by calm pictures not only after the
pictures had been shown, but also before they were shown.

A result of expectation effects?

The objection that the above results could be due to expectation effects rather than
precognition has been a major theme in the short history of presentiment research. Already in
his first paper on presentiment, Radin himself considers this argument, and rejects it (Radin,
1997a). The argument goes as follows. It could be that the participants” arousal level increases
on each trial when a calm picture is shown, right until a trial with a calm picture appears,
whereupon the arousal level returns to baseline, increases again on each trial until a new
activating picture is shown, whereupon it returns to baseline again, and so forth. This
theoretically possible behavior could occur if participants believe that the likelihood of the
next picture being activating increases as the number of calm pictures shown since the last
activating picture increases (that is, “the gambler's fallacy”). An example showing how this
could lead to the arousal level always being at a peak shortly before an activating picture is
presented in Fig. 1.
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Fig. 1. The figure shows how expectation effects could lead to an illusionary increased arousal level
just prior to the presentation of an activating picture. Dashed vertical lines indicate trials with
activating pictures. Calm pictures are shown on other trials.

In a letter to Journal of Scientific Exploration (1998), Radin is criticized by Suitbert
Ertel for not having sufficiently convincingly shown why his results could not be explained as
an expectation effect, as described above. Later, however, Bierman (1999) furnished a
mathematical proof that seemed to demonstrate that, and why, no expectation effect could
lead to the results in question. This proof is consistent with a computer simulation (carried out
by two of the authors JD and JW) of the behavior illustrated in Fig. 1, involving as many as
10,000 trials instead of the small number (71) depicted in Fig. 1. It turned out that the average
arousal level just before an activating picture was almost exactly as high as the average
arousal level just before a calm picture. Similar simulations, giving the same results, have
been conducted by Bierman and Radin (personal communication).

Apparently, then, there is no doubt that, in the long run, the average arousal level will be
the same before an activating picture as before a calm picture. As a matter of fact, on second
thought, this appears to be self-evident: Since each new picture is statistically independent of
the pictures shown earlier (remember that the pictures were sampled with replacement), the
average expectation level should be the same before activating pictures as before calm ones.
Thinking otherwise would be tantamount to believing that “the gambler’s fallacy” is not a
fallacy after all.

As will be shown below, however, the situation is a bit more complicated than one
might expect.

Puzzling computer simulations

In view of what has been said above, the computer simulation in an unpublished study by
Radin (1999) is surprising. In this simulation, fifty "participants” “observed” a sequence of
randomly selected activating and calm pictures (with replacement), the ratio between calm
and activating pictures being 2:1. The participants' behavior was exactly the same as that
illustrated in Fig. 1. The baseline for arousal was thus set to 0, and on each successive trial,
the arousal level was increased by one unit until an activating picture was shown, whereupon
the arousal level was reset to 0. The simulation was run for sequences ranging in length from
14 through 112 trials. The results revealed a small, but clear, positive difference between
activating and calm pictures, which, however, decreased as the length of the sequence
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increased! (Somewhat surprisingly, Radin rejected the difference as probably being due to
sampling errors.)

In order to test the reliability of Radin’s simulation, we have run a similar simulation of
our own, involving 50 "participants”, each one ”being presented with” a number of calm and
activating pictures, with a ratio of 1:1 between calm and activating pictures (to match other
analyses to be considered later). In order to extend Radin’s simulation so as to include very
small sequences, the lengths of the sequences ranged from 2 (instead of 14) through 112
trials. And in order to diminish sampling errors, the “experiment” was repeated 5,000 times
for each sequence length.

The results are shown in Fig. 2. The main results, that is, the difference in arousal level
between activating and calm pictures prior to each new picture, are represented by the middle
curve. The upper and the bottom curves indicate the 95% confidence intervals, and the two
broken curves represent +1.96 standard deviations, calculated over the 5,000 experiments for
each sequence length.

Fig. 2 shows, beyond any reasonable doubt, that the expectation effect is real. But the
figure also shows — just as in Radin’s corresponding simulation — that the effect decreases as
sequence length increases; what is more, the figure also seems to demonstrate that the effect —
again in agreement with Radin"s simulation — approaches 0 as the sequence length approaches
infinity. It may also be noted, in passing, that the two curves representing £1.96 standard
deviations fall within the 95% confidence intervals, indicating that the expectation effects are
not normally distributed (had they been, they would have covered the 95% confidence
intervals).

1,2
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Fig. 2. The graph shows the results of a simulation involving 50 “participants”, each one being
presented with sequences of calm and activating pictures in a pool, with a ratio of 1:1 between
calm and activating pictures. The middle curve represents the difference in arousal between
activating and calm pictures prior to each new picture. The upper and the lower curves
indicate the 95% confidence intervals, and the two broken curves represent + 1.96 standard
deviations, calculated over the 5, 000 experiments for each sequence length.

In the simulation presented in Fig. 2, the mean arousal levels preceding arousing or calm



A Computational Expectation Bias

differences were calculated. This is not the only possible procedure, however. One alternative
is (a) to sum up the arousal values preceding activating and calm pictures, respectively, for
each participant and (b) to calculate the mean sum across participants for the respective
activating and calm pictures. As far as bias is concerned, this is, in effect, equivalent to
calculating the sum of the individual summed arousal levels prior to activating and calm
pictures, respectively, since the number of participants is the same for both types of pictures.
Another alternative is (a) to merge all the sequences into one single cluster of sequences and
(b) to calculate the mean arousal level prior to activating and calm pictures, respectively, for
this whole cluster directly, instead of first calculating the means for each individual sequence
separately, as in Fig. 2. Replications of the simulation shown in Fig. 2 using these two

alternative procedures are shown in Fig. 3.
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<The figure shows two diffegent replications of the simulation shown in Fig. 2. 3n Graph A,
aneans of summed arousal values prior to activating and calm pictures, respectively, have been
Xcalculated across sequences/participants. In Graph B, mean arousal values prior to activating
2and calm pictures, respectively, have been calculatetg across stimuli after sequences have been

gmerged into a cluster.

Fig. 3.

218
9dxa pa;

1adxa

a2

As can be seen from Fig 3A, when the sums of #ndividual arousal values are averaged
across“sequences/participants, there is no bias. As can’be seen from Fig. 3B, however, when
means are calculated across stimuli for the whole set of sequences without first calculating
individual means, there is a bias, although a substantially smaller one than that obtained in
Fig. 2.
Thus far, our major simulation results can be summarized as follows: In the long run
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no discernible difference in arousal level between activating and calm pictures, in accord with
the fact that each picture is statistically independent of previously presented pictures. But in
the long (5,000 experiments with 50 participants) short (say 20, or so, trials) run, there
actually is a difference in arousal between activating and calm pictures, unless individual
sums (in contrast to means) of arousal values are averaged across participants/sequences (in
contrast to stimuli), in which case no bias occurs.

Different arousal models

Any simulation of real presentiment experiments is, of course, critically dependent on how
the arousal level, or, more generally, the expectation about which type of picture is going to
be presented on the next trial, changes as a function of previous pictures. Thus far, we have
only considered one possible model, depicted in Fig. 1, according to which the arousal level
increases linearly as a function of the number of calm successive pictures.

An alternative model would be one where arousal grows as a positively accelerated
function of the number of calm successive pictures, such as an exponential function.

In our view, however, the most realistic model has a sigmoid form. At the beginning of
a series of calm stimuli, there is probably no strong expectation, or any expectation
whatsoever, that an activating stimulus will be presented on the next trial, meaning that
arousal would grow only slowly, or not at all, at the beginning of the series. But as the
number of calm successive stimuli increases, it is reasonable to assume that the expectation of
the next stimulus being activating would grow increasingly fast, up to some inflexion point at
which the curve levels off.

In the next major section, however, where the bias will be analyzed more theoretically,
we will turn to a simpler model. For convenience, we will use a binary model. In that model,
instead of assuming that arousal in a series of calm pictures increases monotonically, as in the
above models, arousal increases from 0 to 1 at the first picture in a series of calm pictures and
remains at that level until an activating picture resets the level to 0 (see Fig. 4). Although this
model is certainly highly simplified, it still captures the essence of the bias.
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Fig. 4. The graph shows a simplified, binary model of how expectation effects could lead to an
illusionary increased arousal level just prior to presentation of an activating picture. Arousal
increases from 0 to 1 at the first picture in a series of calm pictures and remains at that level
until an activating picture resets the level to 0.
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Quantitative estimates of effect sizes

An important question to consider is how large the artefacts can be. A precise answer would
allow us to estimate the probability that reported psi effects might be explained away by this
artefact.

As can be seen from the qualitative treatment above, the effect size is dependent on the
number of trials that are pooled before one averages. Also, the effect size is dependent on the
strategy that subjects use depending on the “history” of past trials. Finally, the effect is
dependent on the ratio between the two types of target.

Simulations were performed using a “realistic” presentiment experiment, involving 16
subjects and 32 trials per subject. It should be noted, however, that presentiment experiments
have been performed with a much smaller number of subjects and that the effects can be
expected to be larger for a smaller number of subjects.

Simulations were run for two ratio’s: Activating: Calm = 1:1 and 1:2, respectively.

First, we tried four models of reasonable strategies, mentioned above: (1) the binary
model, (2) the linear model, (3) the exponential model (chosen so as to yield a growth rate of
about thirty percent) and (4) the sigmoid model (with an increasing growth rate starting at the
fifth trial and a declining growth rate starting at the nineth trial). Each of these models reflects
a specific way by which subjects adjust their anticipation as a function of the number of
consecutive calm pictures. The observed biases are expressed as a relative effect:

Mean - Mean

BiaS =100 - Activating
Mean,,

Calm

The results of a simulation of about a million of such experiments is shown in Table 1. As can
be seen, for both ratios, all four models yield substantial artefacts when averages are
calculated per subject, but when subjects are pooled before averaging, the bias becomes
extremely small.

Table 1: Means and standard deviations of biases from a simulation of four different models and two
ratios between activating and calm stimuli.

Averaged per Ss Averaged all pooled
Model Ratio Mean (%) SD (%) Mean (%) SD (%)
Binary 1:1 6.39 1.26 -0.053 1.25
Binary 1:2 4.70 0.95 -0.100 0.97
Linear 1:1 12.48 1.61 0.008 1.77
Linear 1:2 7.07 0.74 0.002 0.80
Exponential 1:1 11.34 1.86 0.057 2.10
Exponential 1:2 22.99 7.17 0.080 3.82
Sigmoid 1:1 6.39 0.76 0.020 1.39
Sigmoid 1:2 12.05 1.26 0.020 1.39

The question remains if there are no other models that will give larger artefacts. To
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number of consecutive calm stimuli as coefficients. We assumed throughout that the
activation after one or more consecutive activating stimuli was always 0. The values of the
coefficients were determined randomly, and after a million of such simulations, the
coefficients yielding the largest bias were selected for an extensive test. This method might,
of course, just miss a peculiar combination of coefficients (we use 32), because the search
space is extremely large. Therefore we used a more systematic “hill-climbing” approach as
well: First the largest bias was searched with systematic variation of the first four coefficients
and then the next four were systematically explored while holding the first four at the values
that generated the largest bias to begin with. There is a small risk that this approach might
result in a local maximum with other unobserved maxima. The results of our search for the
largest bias resulting from any model are given in Table 2.

Table 2: Means and standard deviations arising from search for the largest bias producing model.

Averaged per Ss Averaged all pooled
Worst Model Ratio Mean Sd Mean SD
Random search 1:1 12.96 2.08 -0.046 2.14
Systematic search  1:1 26.14 5.16 0.310 5.50
Random search 1:2 10.78 1.75 0.012 1.74
Systematic search  1:2 22.35 3.34 -0.004 3.38

Apparently the random search method does not work well, but the systematic search
gives results that are indeed larger than found with analytical models as show in Table 1.
Realizing that, for combinatorial explosion reasons, the systematic search only used the first
eight coefficients, it is not impossible that models exist which produce even larger artefacts.
In further research the analyses should be extended to models of strategies which take into
account the number of consecutive activating stimuli, or any other history; but at this point,
analytical methods should probably take over.

From the simulation results it can be concluded that for realistic experiments the method
of averaging per subject is introducing errors in the order of magnitude of the empirically
observed effect or even larger. An argument that actual data show that a specific model does
not apply can not be used because, as can be seen from the results, all models do result in
measurable bias and thus different subjects might use different models, which will obscure an
overall search for a shared model. Nonetheless, these subjects will introduce a bias. On the
other hand, it is also clear that pooling all data before averaging is a sound procedure. It is not
infallible, however, as indicated by the 0.30 % bias produced by the systematic search for the
1:1 ratio. (All or most published pre-sentiment experiments have pooled the date before
averaging.)
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Theoretical Considerations
When the bias stays away

As suggested above (Fig. 3A), one way of avoiding the bias is to refrain from calculating
mean arousal levels across stimuli and just compare summed arousal units prior to activating
and calm pictures — either directly or after averaging across sequences/participants. That no
bias appears in this procedure follows inevitably from the fact that the arousal state at any
particular point in a sequence is independent of whether the next stimulus is an activating
stimulus (A) or a calm stimulus (C). The gambler’s fallacy is a fallacy! However, as will be
argued in the discussion, the “just sum” method runs a high risk of leading to Type Il errors,
that is, a failure to detect any possible real effect.

Let us now consider an infinitely long sequence of randomly ordered activating and
calm stimuli. The expected number of calm stimuli in such a sequence, E(Nc), is half of the
total number of stimuli, N:

N

The same is true of the expected number of activating stimuli, E(Na):

m=>—1 =
N

Because stimuli are randomly distributed, half of the calm stimuli will be preceded by
another calm stimulus; hence, their preceding arousal values will be equal to one unit. For the
same reason, half of the activating stimuli will also be preceded by a calm stimulus, and their
preceding arousal values will also be equal to one unit. It then follows that the expected
average arousal level prior to a calm stimulus, E(ac), becomes _ and that the expected mean
arousal level prior to an activating stimulus, E(aa), also becomes _.

Besides revealing the exact values of E(ac) and E(aa) for the binary arousal model, this
derivation confirms our previous statement that no bias occurs when a randomly distributed
sequence of calm and activating stimuli is infinitely long.

In addition to refraining from calculating mean arousal values across stimuli, there is
also another method of avoiding the bias. By considering all possible sequences of a given
length, one finds that no bias exists when all of them are merged into a single cluster or, in
other words, when all participants are “replaced” by one single “super person”. The reason
why this happens is the following: Since (i) the total number of A-stimuli is the same as the
total number of C-stimuli and (ii) the total sum of arousal units preceding A-stimuli is the
same as the total sum of arousal units preceding C-stimuli, the mean arousal level for A-
stimuli must be equal to the mean arousal level for C-stimuli.

It should be pointed out, however, that, in an infinitely long sequence, the overall
arousal means for activating and calm pictures will not be equal to the expected values. As
can be easily shown, when all possible sequences are merged into a single cluster, the mean
arousal level preceding both activating and calm stimuli follows from the expression:
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where n is the sequence length. As can be seen from this expression, the mean arousal levels
increase continuously from _ in the case of n=2 and continue to approach 0.50 as the
sequence length increases.

But why, then, do the mean arousal values in a real, finite sequence, or a set of merged
real sequences, deviate from 0.50 — the expected value for an infinitely long sequence? This
question will be addressed below.

Finite versus infinite sequences

A real sequence of the type now considered can be thought of as a segment of an infinitely
long sequence of randomly ordered successive A- and C-stimuli, associated with arousal units
according to the binary model (indicated as A or *C), as illustrated by the sequence

......cltaclciaciaclaciciaAAaAA ...

Now, if such a sequence is partitioned into smaller sequences, the original sequence may
be cut off at four different places: (1) between two C-stimuli, (2) between one C-stimulus and
a following A-stimulus, (3) between an A-stimulus and a following C-stimulus, and, (4),
between two A-stimuli. This is indicated by the vertical bars in our illustrating segment:

.......... .C!AC|ICAC|AC'A|IC!ICA|AAA ............

The first two types of cuts have the effect of eliminating arousal units; the first cut
eliminates an arousal unit preceding a C-stimulus and the second cut an arousal unit preceding
an A-stimulus. Both these effects lead to a general reduction of the ratio between the number
of arousal units preceding a given type of stimulus (A or C) and the total number of stimuli of
the same type. The two other cuts have no such consequences and are thus irrelevant as far as
the number of arousal units is concerned. Thus, in forming particular sequences, by cutting
the connection between a C-stimulus and the following C- or A-stimulus, one reduces the
total number of arousal units preceding A- or C-stimuli as compared to the total number of A-
or C-stimuli. The smaller the sequences formed by the cuts, the larger the amount of the
reduction.

Why does the bias appear and why is it dependent on sequence length?

To get an intuitive understanding of why and how the bias arises, it is useful to consider all
possible sequences of the shortest possible length, two stimuli. There are four possible such
sequences: CC, CA, AC and AA, corresponding to an experiment with four participants, each
one being presented with two stimuli. The expectation/arousal effects for the four stimulus
pairs are shown in Table 3.

As can be seen from Table 3, the average arousal level prior to activating stimuli (0.33)
is larger than the average arousal level prior to calm stimuli (0.17). Why is it so? We may first
note that the stimulus pairs CC and CA differ from the stimulus pairs AC and AA in that the
two former stimulus pairs are both associated with increased arousal levels, while the two
latter stimulus pairs are not. We may further note that some of the four stimulus pairs differ
from each other with respect to number of C-stimuli, nc, and the number of A-stimuli, na; the
CC-pair consists of two C-stimuli but no A-stimulus; both the CA-pair and the AC-pair
consist of one A- and one C-stimulus; and the AA-pair, finally, is composed of two A-stimuli.
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Table 3. Analysis of expectation/arousal effects for activating and calm stimuli for the four possible
sequences consisting of two stimuli.

Stimuli

Activating Calm
Sequences Sum(a,) Na Mean(aa) Sum(ac) Nc Mean(ac)
c'c 0 0 - 1 2 1/2
c'A 1 1 1 0 1 0
AC 0 1 0 0 1 0
A A 0 0 0 0 0 -
Sum 1 4 1 1 4 1/2
Mean 0.25 1 1/3=.33 0.25 1 1/6=.17

“1”= one arousal unit preceding an activating or a calm stimulus; Sum(a,)=sum of arousal units preceding
activating stimuli; na=number of activating stimuli; Mean(a,)=mean of arousal units preceding activating
stimuli; Sum(ac)=sum of arousal units preceding calm stimuli; nc=number of calm stimuli; Mean(ac)=mean of
arousal units preceding calm stimuli.

The fact that the bias occurs is, as can be seen, attributable to the difference between the
two arousal generating stimulus pairs, CC and CA. The first C in the CC-pair and the single C
in the CA-pair are both generating the same arousal magnitude, one unit. But there is only one
A-stimulus in the CA-pair, while there are two C-stimuli in the CC-pair. As a consequence,
the mean of the arousal magnitude created by the first C-stimulus in the CA-pair (1/1)
becomes higher than the mean of the arousal magnitude created by the first C-stimulus in the
CC-pair (1/2). And since neither the single A-stimulus in the AC-pair nor the first A-stimulus
in the AA-pair generates any arousal at all, the overall mean arousal level prior to A-stimuli
(0.33) becomes larger than the overall mean arousal level prior to C-stimuli (0.17).

This explanation will later be worked out in more detail and generalized to longer
sequences. But before that we will take a closer look at the relation between the magnitude of
the bias and sequence length.

Table 4 shows the means of the individual average arousal magnitudes preceding
activating and calm stimuli, respectively, as well as the corresponding values of the bias for
sequences ranging in length from two through twelve stimuli. For activating stimuli, the total
mean increases rapidly, reaching the expected value for an infinitely long sequence, 0.50
(disregarding further decimals), already at the sequence length of seven stimuli. For the calm
stimuli, by contrast, the total mean increases more slowly, reaching an upper limit of 0.42 for
the present range of sequence lengths. Disregarding the increment in the size of the bias when
the sequence length increases from two to three stimuli, the bias diminishes continuously as
the sequence length increases.

In the analyses leading to the results shown in Table 4, comparisons between arousal
levels for activating versus calm stimuli were made on the group level; that is, before mean
differences were calculated, the mean arousal levels prior to activating and calm stimuli were
calculated across participants. But our original simulation in the previous section (Fig.2) was
run on the individual level; that is, before the final mean differences were calculated, mean
differences were calculated for each individual “participant” separately (giving a higher
statistical power than a corresponding analysis at the group level, as noted before).
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Table 4. Means of individual mean arousal levels preceding activating and calm pictures and
corresponding bias values for sequences ranging in length from two through twelve stimuli.

Stimulus

Sequence Length Activating Calm Bias
(No. of Stimuli)

2 0.33 0.17 0.17
3 0.43 0.24 0.19
4 0.47 0.28 0.18
5 0.48 0.32 0.17
6 0.49 0.34 0.15
7 0.50 0.36 0.14
8 0.50 0.38 0.12
9 0.50 0.39 0.11
10 0.50 0.40 0.10
11 0.50 0.41 0.09
12 0.50 0.42 0.08

Table 5 shows such a within subjects analysis for the same sequence length as in Table
1, that is, two stimuli. In this table, the CC-sequence and the AA-sequence in Table 3 (the
uppermost and the bottom sequences) have been dropped. The reason is, of course, that in a
within subjects analysis of the present type, not only undefined values have to be excluded,
that is, the average arousal level preceding A-stimuli in the sequence consisting solely of C-
stimuli and the average arousal level preceding C-stimuli in the sequence consisting solely of
A-stimuli, but both these sequences must be excluded altogether, so that each sequence
consists of at least one A-stimulus and at least one C-stimulus.

Table 5. Within subjects analysis of expectation/arousal effects for activating and calm stimuli for
the two possible sequences consisting of two stimuli.

Stimuli
Activating Calm Mean(aA)-
Sequences Sum(as)  na Mean(aa) Sum(ac) nc Mean(ac) Mean(aC)
C’A 1 1 1 0 1 0 1
AC 0 1 0 0 1 0 0
Sum 1 2 1 0 2 0 1
Mean 1/2 1 1/2 0 1 0 1/2

“1”= one arousal unit preceding an activating or a calm stimulus; Sum(a,)=sum of arousal units preceding
activating stimuli; ny=number of activating stimuli; Mean(as)=mean of arousal units preceding activating
stimuli; Sum(ac)=sum of arousal units preceding calm stimuli; nc=number of calm stimuli; Mean(ac)=mean of
arousal units preceding calm stimuli.

A comparison between Table 3 and Table 5 shows the effect of excluding the uppermost
and the bottom sequences in Table 3: The mean of the average individual arousal levels
preceding activating stimuli has increased from 0.33 to 0.50 (the expected value for an
infinitely long sequence!), whereas the mean of the average individual arousal levels prior to
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Table 6 replicates Table 4 using within subjects analyses instead of group level
analyses. Table 6 thus shows the means of the individual average arousal levels preceding
activating and calm stimuli, respectively, as well as the corresponding values of the bias,
using within subjects analyses for sequences ranging in length from two through twelve
stimuli.

We may first note that the mean of the average individual arousal levels preceding
activating stimuli now is equal to 0.50 throughout, and not only for sequences exceeding six
stimuli, as in Table 4. This is an important finding. It shows that the previously demonstrated
deviations from 0.50 in our group level analyses can altogether be attributed to one single
sequence: the one consisting solely of activating pictures. Thus, the earlier deviations from
0.50 arose as a consequence of this particular sequence being included in the calculation of
the mean of the average individual arousal levels preceding activating stimuli, thereby
decreasing the overall mean as compared to the present analysis. This, in turn, explains why
the total mean approached 0.50 so rapidly: Since only one of all possible sequences is solely
composed of activating stimuli, this sequence becomes an increasingly smaller proportion of
the total set of sequences as sequence length — and hence the number of possible sequences —
increases.

Table 6. Means of individual mean arousal levels preceding activating and calm pictures and
corresponding bias values using within subjects analyses for sequences ranging in length
from two through twelve stimuli.

Type of Stimulus
Sequence Length

(No. of Stimuli) Activating Calm Bias
2 0.50 0.00 0.50
3 0.50 0.17 0.33
4 0.50 0.25 0.25
5 0.50 0.30 0.20
6 0.50 0.33 0.17
7 0.50 0.36 0.14
8 0.50 0.38 0.12
9 0.50 0.39 0.11
10 0.50 0.40 0.10
11 0.50 0.41 0.09
12 0.50 0.42 0.08

Thus, in a within subjects comparison between activating and calm stimuli using the
present model, only the calm stimuli deviate from the behavior in an infinitely long sequence.
Through simulations, we have found that, in such a comparison, the total mean of the arousal
levels preceding calm stimuli, TM, is related to sequence length, SL, by the simple equation
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But how is it, then, that the bias does appear and decreases as sequence length
increases? We have already suggested that the C-stimuli, and not the A-stimuli, are
responsible for the bias. In all sequences with at least one A-stimulus and one C-stimulus, the
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ratio between the number of arousal units preceding A-stimuli and the total number of A-
stimuli is exactly the same as in an infinitely long sequence (see Tables 4 and 6).

In order to understand how the C-stimuli give rise to the bias, it is useful to make a
distinction between two different “roles” that a C-stimulus can play: (a) as a “sender” of an
arousal unit to the next stimulus in the sequence and (b) as a “receiver” of an arousal unit
from the previous stimulus. The first C-stimulus in a (partial or complete) sequence consisting
solely of C-stimuli only plays the role of a sender of an arousal unit, not that of a receiver. By
contrast, all other stimuli in the sequence act both as a sender and as a receiver (except for the
last C-stimulus in a complete sequence, which only acts as a receiver). Here (bold text) are
some examples of the type of sequence we have in mind:

CCAAC!CACAC......
clclcAc!CACAC......
ACAC'CACAC!CA....
AAAC!ciciciclcacica.
clclcicicicicicicicicicicticicicic

In such sequences, there is always one stimulus more than there are arousal units — the
stimulus initiating the sequence, which only acts as a sender of arousal, not as a receiver. This
means that, in calculating the mean arousal level preceding calm stimuli for a complete
sequence (a participant), the denominator always consists of at least one stimulus more than
the number of arousal units. Generalizing from the simple example in Table 3, with only two
stimuli in each sequence, this means that bias will occur.

But C-stimuli that are followed by one or several other C-stimuli do not always have the
same impact. A C-stimulus that initiates a long sequence of C-stimuli gets a smaller weight
than a C-stimulus that initiates a shorter sequence. Whereas, for example, the mean arousal
level for the sequence CCCC becomes _, the mean arousal level for the shorter sequence CCC
becomes only 2/3. Thus, the strength of the bias diminishes as the number of C-stimuli
initiating (partial or complete) sequences of C-stimuli diminishes relative to other C-stimuli.

This relationship explains why the bias decreases as sequence length increases. When
sequence length is relatively short, sequences consisting solely of C-stimuli are necessarily
relatively short. But as sequence length increases, sequences consisting solely of C-stimuli
will, on the average, become longer, since an increment of the sequence length permits — and
necessitates — that longer sequences of C-stimuli will be formed. This, in turn, means that C-
stimuli followed by one or several other C-stimuli will, on the whole, be reduced in number
relative to other C-stimuli. As a consequence, the average of the mean arousal levels
preceding C-stimuli will continuously approach 0.50, the value in an infinitely long sequence,
and, accordingly, the bias will continuously be reduced.

Incomplete merging of sequences

We have earlier noted that the bias vanishes altogether when all possible sequences are
merged into a single cluster. But we have also noted that the bias still remains when only a
sample from the complete set of possible sequences is analyzed (Fig. 3B). It is therefore
reasonable to assume that the bias decreases gradually as a function of the size of the sample
from all possible sequences. In the following, we will show that this is true.

That the bias gradually diminishes when different sequences of a given length become
merged into increasingly larger clusters before mean arousal values are calculated follows, as
we will see, from the fact that the bias ceases to exist when all possible sequences of a given
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length are merged into a single cluster. To show this, we return to the set of sequences
consisting of only two stimuli:

clc C'A AC AA.

If the four different stimulus pairs are combined in pairs, in all possible orders
(corresponding to sampling with replacement), we will get 4°=16 different pairs of stimulus
pairs. Each of these combinations corresponds to a separate experiment involving two
participants, each of whom is presented with two stimuli. The bias is calculated by averaging
the mean arousal levels preceding activating and calm stimuli, respectively, across the 16
possible experiments, wherein the two sequences in each experiment have been merged into
one cluster.

If the four different stimulus pairs, instead of being combined in pairs in all possible
orders, are combined in triples in all possible orders, we will get 4°=64 different triplets of
stimulus pairs, each triplet corresponding to a separate experiment involving three
participants, each of whom is presented with two stimuli. As in the case of pairwise
combinations of sequences, the bias is calculated by averaging the mean arousal levels
preceding activating and calm stimuli, respectively, across all possible different experiments
(64) with the three sequences in each experiment being merged into one cluster.

Table 7 shows how the bias decreases as the number of sequences in each experiment
increases from one (separate sequences) through four — the merging of all four sequences into
a single cluster. As can be seen, the activating and the calm stimuli approach the unbiased
value of 0.25, though from *“opposite directions” — the former from higher values and the
latter from lower values — as the number of sequences being merged increases from one
through four. Specifically, (at least in this example) the bias decreases linearly with the
number of sequences.

Table 7. Total means of average arousal levels prior to activating and calm stimuli, respectively, and
the corresponding bias for the sequence length of two stimuli for varying number of
sequences being merged into one cluster.

Stimuli
Number of Sequences Activating Calm Bias
1 0.33 0.17 0.16
2 0.31 0.19 0.12
3 0.29 0.21 0.08
4 0.25 0.25 0.00

But how can we explain the fact that the size of the bias diminishes as a function of the
number of sequences being merged? One way of doing this (there are probably other ways as
well) is to regard the set of all possible sequences of a given length as a population of
sequences and subsets of this set, that is, clusters of sequences or the single sequences
themselves, as samples from this population. For the sequence length of n stimuli, the
population consists of 2" sequences. This means that 2"" different samples with m sequences
in each sample can be drawn from the population.
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A particular measure of the individual sequences — for instance, the mean arousal level
preceding activating stimuli, Mean(aa), or the mean arousal level preceding calm stimuli,
Mean(aa) — can now be regarded as a sample property. How well a given sample property
matches the corresponding property of the population is, as is well known, dependent on the
size of the samples. By virtue of the law of large numbers, as the size of the samples
increases, the match between the samples and the population will increase, due to differences
between elements within samples being increasingly counterbalanced. In Table 5, this is
reflected by the fact that Mean(a,) and Mean(ac) gradually approach 0.25 — the value of
Mean(aa) and Mean(ac) for the total set of sequences — as the size of the samples increases
from m=1 (no merging at all) through m=3 (merging of the individual sequences in triples).

Discussion

There is no doubt that the presentiment experiment could be afflicted by a potential statistical
bias, based on an expectation effect: an effect of the expectation that the likelihood of an
activating stimulus being presented increases with the number of previous consecutive calm
stimuli — that is, a variant of the "gambler’s fallacy”. It is also clear, though, that the bias
decreases as the length of the sequence increases and is non-existent in the theoretical case of
an infinitely long sequence, consistent with the fact that stimuli are statistically independent
of each other.

Using a simplified expectation model (Fig. 4), we have been able to explain — though
only in a rather informal manner — why the bias appears and why it is dependent on the
sequence length. (For a more formal approach to the present bias, see Jiri Wackermann’s®
paper on pages x-y of this volume.) Basically, the bias and its dependency on sequence length
are attributable to the occurrence of “chains” of calm stimuli. When means of arousal units
prior to calm stimuli are calculated for individual sequences, the first stimulus in such a chain
enters into the calculations even though it is not preceded by any arousal itself. This will lead
to a reduction in the mean arousal prior to calm stimuli as compared to the mean arousal prior
to activating stimuli. But as the sequence length increases, the effect will diminish, due to the
reduced importance of the first calm stimulus in a series of such stimuli.

When data are analyzed on the individual level, the present bias poses a serious threat to
any presentiment experiment, due to its large effects (see Tables 1 and 2). Even though some
statistically significant experimental effect would be larger — or even much larger — than the
effect predicted for some realistic expectation model, or an estimated maximal effect for any
model, we do not know to what extent the bias has “helped” the results to reach statistical
significance.

However, when data are pooled across subjects before means are calculated, the
situation is different. It is true that the bias remains unless all possible sequences have been
included and are evenly distributed across participants (which, in practice, is impossible using
the standard design), but the expected effect of the bias was found to be extremely small for

2 Starting from different experiments, Jiri Wackerman and our group have identified and
investigated the present bias independently and without knowledge of each other’s work.
JW:s approach is analytical, whereas ours is computational. Thus, the two approaches
complement each other.

We do not know whether the bias can be found in previous research. We do know,
however, that it has gone unnoticed by all, or the vast majority of, experimental researchers,
both within and outside parapsychology.
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various reasonable models of expectation growth (see Table 1). Nevertheless, pooling data
before averaging is not an infallible method. Moreover, even if one is willing to assume that
the bias in reality is extremely small and therefore cannot be mistaken for a genuine effect, the
effects of the bias are still disturbing, mainly because they render any statistical test difficult
or impossible to perform.

As an alternative to reducing the effect of the bias by pooling data across sequences, one
might find a strategy that does not produce any bias at all. Such a strategy was, indeed,
suggested previously in this paper. It is based on the fact that no bias occurs when sums
instead of means of individual arousal levels are considered. The corresponding strategy is
simply to use the unbiased sums instead of the biased means in comparing arousal levels prior
to activating versus calm stimuli. As already suggested, however, there is a drawback also to
this strategy: Since the relative number of activating and calm stimuli vary from one
participant to another, due to sampling fluctuations, a possible true presentiment effect runs
the risk of being obscured by the random effects of unequal numbers of activating and calm
stimuli. It is true that the hypothetical presentiment effect might be strong enough to
withstand this effect, but there is no good reason to believe a possible presentiment effect to
be particularly strong. It is also true that sampling effects can be reduced by increasing
sequence length, but sequences can obviously not be made too long without jeopardizing any
possible presentiment effect, due to fatigue or reduced motivation on the part of the
participants. Nevertheless, the strategy now considered cannot be definitely rejected.

An alternative strategy has been suggested by James Spottiswoode (personal
communication). This strategy attempts to avoid the bias by using methods of data collection
and data analysis that make the data immune to the bias. This is assumed to be accomplished
by presenting stimuli at irregular, instead of fixed, time-intervals, and analyzing the change of
the response instead of the response itself. Although this is an interesting possibility, some
assumptions behind this strategy (for example, that the change of the response is not
dependent on the level of the response) need to be investigated.

In a sense, the final strategy suggested here is by far the soundest one. Like the “just
sum” strategy considered above, it is based on the idea of avoiding calculating means of
arousal values across stimuli for separate individuals or samples of individuals. Based on the
fact that no bias occurs when all possible sequences are merged into a single cluster, all these
possible sequences are entered into the experiment. This means, however, that stimuli as such
cannot be randomly chosen; instead, all the possible sequences are randomly distributed
across participants. The point is, of course, that in the resulting set of data, the total number of
activating and calm pictures will be the same.

However, on some conceptions of precognition, such as the occurrence of “time-
reversal”, predetermining stimulus orders might be an inadequate method, because
randomization does not occur in real time, even though the assignment of sequences to
subjects can be done in real time.

Unfortunately, there are also practical limitations to the present strategy. One is that the
sequence length must be very short so as not to give rise to a prohibitory number of different
sequences; a sequence length of five stimuli or so is probably maximum. In terms of the total
number of trials, however, this limitation can be compensated for by using a large number of
participants — one or several participants for each particular sequence. Unfortunately,
however, the present strategy cannot be used for re-analyzing old presentiment data, where
only samples of sequences are used.

Another practical problem is that the experimenter is not allowed to have any contact
whatsover with the participants.

The statistical bias considered in this paper is certainly not unique to the presentiment
experiment, but may potentially occur in many different experiments, both within and outside
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parapsychology. Experiments that are potentially vulnerable to this bias are, as far as we can
see, characterized by the following five properties: (1) There is a fixed number of types of
targets (for example the different numbers of eyes in dice throwing), instances of which are
randomly presented to the participant, with or without replacement. (There is nothing special
about just two target types.) (2) Feed-back is given after each trial; that is, the participant is
informed as to whether the response was correct. (3) The different target types are associated
with expectation functions that differ from each other in a relevant way (which has to be
worked out for particular types of experiments.) (4) The dependent variable is a set of
responses that are systematically (but not necessarily monotonically) related to the different
expectation functions. (There is nothing special about EDA as an indicator of expectation.)
(5) Means, instead of sums, of responses are calculated for each target type and participant (or
sample of participants).

At the present time, we do not know how many previous ESP experiments satisfy all of
the five criteria — or if there exist any that do. In any case, it is important to re-consider as
many previous ESP experiments as possible to ensure that none of them have been affected
by the present bias. Similarly, the various meta-analyses of different types of ESP
experiments that have been carried out during the past decades (see, e.g., Radin, 1997b)
should be re-considered to discover whether any of the positive findings might be accounted
for by the present bias. Doing so would seem particularly urgent in view of the fact that very
small effects may result in significant overall results, due to the large amount of data
involved.

That this particular bias could in fact have occurred in some previous ESP experiments
is suggested by an extensive meta-analysis on “forced choice” precognition experiments
conducted by Charles Honorton and Diane Ferrari (1989). There was one single moderator
variable discriminating successful from unsuccessful experiments: the occurrence versus
nonoccurence of feedback. Although this finding could, of course, be interpreted differently,
it does suggest that the present bias could account for the fact that only experiments using
feedback gave positive results.

Outside parapsychology, there are, most notably, several areas within psychology where
experiments that are formally of the same type as Radin’s presentiment experiment have been
performed. Among these areas are, for example, psychophysiology, attention, memory and
learning. Again, such experiments should be re-considered, to ensure that the present bias was
not responsible for the results.

The present paper has been exclusively concerned with the case of randomization
without replacement, or open deck randomization. However, in mainstream psychology,
closed deck randomization is much more common than open deck randomization. This means
that, on top of the expectation effect considered in this paper, which properly may be regarded
as a numerical bias attributable to faulty calculations rather than to expectations per se, there
is another, “true” expectation effect. The combination of the two effects may by quite
dramatic.

Could the present bias somehow be utilized for making any useful predictions, such as
predicting gambler’s performance at the roulette table by means of EDA measures? The
answer to this question is definitely “No”. The reason is simple: the bias is basically
concerned with the relation between expectations, on the one hand, and the relative number of
different types of targets, on the other hand, and not with foreseeing future events. In other
words, knowing how expectations tend to be formed on the basis of previous stimuli cannot
be used to predict the correctness of these expectations, only to predict how the expectations
become “normalized” when means of expectations prior to different types of stimuli are
calculated. But this feat is not in any way tantamount to outwitting chance; that is, to
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predicting performance in terms of the total number or intensity of correct expectations about
alternative future events.
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